Company

Artificial Intelligence, Business Intelligence, Company, Data Governance, Data Marketing, Data Mining and Data Integration, Machine Learning, Self-service Analytics

Lean UX Design: the key to revolutionizing your BI development

What is Lean UX Design and why is it crucial to your BI?

In the dynamic world of Business Intelligence (BI), where the complexity of data meets the evolving needs of users, Lean UX Design is emerging as a revolutionary approach. This user-centered methodology promises to radically transform the way we design and develop BI solutions.

Lean UX design in brief

  • User-centered approach
  • Rapid iterations and continuous feedback
  • Cross-functional collaboration
  • Waste reduction and resource optimization
  • Agile adaptation to change
But how can Lean UX concretely improve your BI projects? Let’s delve into the details.

The 5 key steps of the Lean UX process in BI

  1. Problem and user definition: gain an in-depth understanding of your BI users’ specific challenges.
  2. Ideation and hypotheses: formulate hypotheses about potential solutions.
  3. Rapid prototyping: create low-fidelity prototypes to test your ideas.
  4. User testing: get rapid feedback to validate or invalidate your hypotheses.

The tangible benefits of Lean UX in BI development

1. Significant reduction in development time and costs

By quickly identifying what works and what doesn’t, Lean UX saves precious resources.

“Thanks to DATANALYSIS’ Lean UX approach, we reduced our BI development costs by 30% while increasing user satisfaction by 50%.”

– Marie Dupont, CIO, TechInnovate SA

2. Improved user experience and adoption of BI tools

BI solutions designed with users, for users, guarantee better adoption and use.

3. Greater agility and adaptability to market changes

In an ever-changing BI environment, Lean UX enables you to pivot quickly and efficiently.

Here are the 5 steps to implementing Lean UX in your BI projects :

Integrating Lean UX into your BI strategy: where to start?

Adopting Lean UX in your BI development can seem daunting.

Here are some steps to get you started:

  1. Assess your current UX maturity
  2. Train your teams in Lean UX principles
  3. Start with a pilot project
  4. Measure and communicate results
  5. Gradually extend the approach to other projects

CONCLUSION

In a world where data is king, Lean UX offers a way to turn that data into actionable insights faster and more accurately than ever before. For companies looking to make the most of their BI investments, Lean UX isn’t just an option, it’s a competitive necessity.

At BUSINESS LAB CONSULTING, we’re passionate about applying Lean UX to BI development. Our team of experts is ready to guide you through this transformation to optimize your processes, reduce your costs and significantly improve the user experience of your BI solutions.

Want to learn more ?
Schedule a free consultation with our Lean UX experts
Business Intelligence, Company, CRM, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Data Regulations, Machine Learning, Self-service Analytics

DATA: 7 pitfalls to avoid. Ep 2/7 – Technical errors: how is data created?

Having defined a few key data-related concepts, we can now delve into the technical issues that can lead to errors. This article deals with the problems associated with the process of obtaining the data that will subsequently be used. It’s about building the foundations of our analyses.

And it goes without saying that we don’t want to build a house of cards on sand!

To stay with the construction metaphor, if problems of this nature exist, they will be hidden and barely visible in the final building. Particular care must therefore be taken during the data collection, processing and cleaning stages. It’s not for nothing that it’s estimated that 80% of the time spent on a data science project is spent on this type of task.

To avoid falling into this trap, and to limit the load required to carry out these potentially tedious operations, we need to accept three fundamental principles:

  • Virtually all datasets are not clean and need to be cleaned and formatted.
  • Each transition (formatting, join, link, etc.) during the preparation stages is a potential source of new error
  • It is possible to learn techniques to avoid the creation of errors arising from the first two principles.

Accepting these principles does not remove the obligation to go through this preliminary work before any analysis, but the good news is that knowing how to identify these risks, and learning as we go along, helps to limit the scope of this second obstacle.

1. The trap of dirty data.

Data is dirty. I’d even go so far as to say that all data is dirty (see first principle above), with problems of formatting, data entry, inconsistent units, NULL values and so on.

Some well-known examples of this trap

Take the crash of NASA’s Mars Climate Orbiter in 1999, for example. A $125 million error caused by a dual unit system: imperial and metric units. This led to an erroneous calculation that affected the power sent to the probe’s thrusters and its destruction.

Fortunately, not all errors of this nature will cost us so much money! But they do have a significant impact on the results and ROI of the analyses we carry out.

So, at DATANALYSIS, we’re currently running several projects specifically on data quality in the context of DATA Marketing, and we’re dealing with two types of subject:

  • Data validation, which aims to improve data quality through data processing, by :

-Standardizing fields (phone number, email, etc.): +262 692 00 11 22 / 00262692001122 / 06-92-00-11-22 correspond to the same line, and we can automate much of this work thanks to appropriate processing;

– Filling in empty fields using other data in the table. For example, we can deduce the country of residence from telephone numbers, zip codes, cities, etc.

 

  • Deduplication, by :

-Using adapted rules to identify potentially identical lines. Two records with the same e-mail address, telephone number or company ID;

-Using distance calculation algorithms to define similar values in terms of spelling, pronunciation, common characters, etc.

From these examples and our own experience, we can see that this type of error mainly stems from data entry, collection or “scrapping” processes, whether implemented automatically or by humans. So, in addition to the solutions that can be implemented in data preparation processes, improving these preliminary steps will also greatly improve the quality of the data to be processed, and this requires education, training and the definition of rules and standards that are clearly known and shared (data governance is never far away).

Finally, we should also ask ourselves when we can consider this stage to be sufficiently clean. After all, we can always do more and better, but the costs involved can often outweigh the expected returns.

2. The data transformation trap

In the IT world, there’s an image that sums up this type of problem:

Often, the mistake lies between the screen and the seat!

And yes, even the best data scientists, data analysts or data engineers can make mistakes in the data cleansing, transformation and preparation stages.

Frequently, we manipulate several files from different sources and different applications, which multiplies the risks associated with dirty data issues and the risks when manipulating the files themselves:

  • Different levels of granularity
  • Joins on fields whose values are not exactly identical (e.g. ST-DENIS vs SAINT DENIS).
  • Different file perimeters

And this problem can also be made more complex depending on the tools used in our analyses:

  • In Tableau, for example, we can perform data joins, relations or links to link several datasets together. Each type of operation has its own rules and constraints.
  • In Qlik, you need to understand how the associative engine works and the associated modeling rules, which differ from those of a traditional BI model.

In this case, it’s often a question of technical constraints linked to the very business of data preparation, and taking the time to understand the risks and processes in place will save a great deal of time in delivering reliable, high-performance data analysis.

In the next article, we’ll explore the 3rd type of obstacle we may encounter when using data to shed light on the world around us: Mathematical errors.

This article was strongly inspired by the book “Avoiding Data pitfalls – How to steer clear of common blunders when working with Data and presenting Analysis and visualization” written by Ben Jones, Founder and CEO of Data Litercy, WILEY edition. We recommend this excellent read!

You can find all the topics covered in this series here : https://www.businesslab.mu/blog/artificial-intelligence/data-7-pitfalls-to-avoid-ep-1-7-epistemological-errors-how-do-we-think-about-data/

Artificial Intelligence, Business Intelligence, Company, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Data Regulations, Machine Learning

DATA: 7 pitfalls to avoid. Ep 1/7 – Epistemological errors: how do we think about data?

Let’s start by defining what epistemology is.

Epistemology (from the ancient Greek ἐπιστήμη / epistémê “true knowledge, science” and λόγος / lógos “discourse”) is a field of philosophy that can refer to two fields of study: the critical study of science and of scientific knowledge (or scientific work).
In other words, it’s about how we construct our knowledge.

In the world of data, this is a central and critical topic. We are familiar with the process of transforming data into information, knowledge and wisdom:

Here, the problem lies in the way we consider our starting point: data! Indeed, the use of data and its transformation in the following stages are the result of conscious and controlled processes and procedures:

==>I clean up my data, process it in an ETL / ELT, store it, visualize it, communicate my results and share them, and so on. This mastery gives us control over the quality of each step. However, we tend to embark on this work of transforming our primary resource while overlooking a crucial point, the source of our first obstacle:

DATA IS NOT AN EXACT REPRESENTATION OF THE REAL WORLD!

Indeed, it’s all too easy to work with data by thinking of data as reality itself, and not as data collected about reality. This nuance is essential:

It’s not crime, but reported crime
It’s not the diameter of a mechanical part, but the measured diameter of that part.
It’s not public sentiment on a subject, but the declared feeling of those who responded to a survey.

Let’s go into the details of this obstacle with a few examples:

1. What we don't measure (or didn't measure)

Let’s take a look at this dashboard showing all the meteorite impacts on Earth between -2500 and 2012. Can you identify what’s strange here?

Meteorites seem to have carefully avoided certain parts of the planet – a large part of South America, Africa, Russia, Greenland, etc. And if we focus on the graph showing the number of meteorites per year, these have tended to fall more in the last 50 years (and almost not over the whole period covering -2055 to 1975).

Is this really the case? Or rather flaws in the way the data was collected?

  • We have recently begun to systematically collect this information and rely on archaeology to try and determine the impacts of the past. As erosion and time have taken their toll, the traces of the vast majority of impacts have disappeared and can no longer be counted (and no, meteorites didn’t start raining in 1975).
  • For a meteorite impact to be included in a database, it has to be recorded. And to do that, you need an observation, and therefore an observer, who knows who to report it to. These two biases have a major impact on data collection, and help to explain the large areas of the Earth that seem to have been spared by the meteorite fall.

2. Measurement system not working

Sometimes, the cause of this discrepancy between data and reality can be explained by a defect in the collection equipment. Unfortunately, anything manufactured by a human being in this world is liable to fail. This applies to sensors and measuring instruments, of course.

What happened on April 28 and 29, 2014 on this bridge? There seems to have been a huge spike in bicycle traffic across the Fremont Bridge, but only in one direction (blue curve).

Source : 7 datapitfalls – Ben Jones

Time series of the number of bicycles crossing the Fremont Bridge

You’d think it was a beautiful summer’s day and everyone was on the bridge at the same time? That it was a one-way bike race? That everyone who crossed the bridge on the outward journey had a flat tire on the return journey?

More prosaically, it turns out that the blue counter had a fault on those particular days and was no longer counting bridge crossings correctly. A simple change of battery and sensor solved the problem.

Now, ask yourself how many times you’ve been misled by data from a faulty sensor or measurement without being aware of it?

3. Data is too human

And yes, our own human biases have a major effect on the values we record when gathering information. We tend, for example, to round off measurement results:

Source : 7 datapitfalls – Ben Jones

If we go by his data, diaper changes take place more regularly every 10 minutes (0, 10, 20, 30, 40, 50) and sometimes over certain quarters of an hour (15, 45). Wouldn’t that be incredible?

It is an incredible story. In fact, we need to look at how the data was collected. As human beings, we have this tendency to round up information when we record it, especially when we look at a watch or clock: why not indicate 1:05 when it’s 1:04? Or even simpler, 1:00, because it’s even simpler?

4. The Black Swan!

The final example we’d like to highlight here is the so-called “Black Swan” effect. If we think that the data we have at our disposal is an accurate representation of the world around us, and that we can extract from it assertions to be set in stone; then we are fundamentally mistaken about what data is (see above).

The best use of data is to learn what isn’t true from a preconceived idea, and to guide us in the questions we need to ask ourselves to learn more?

But back to our black swan:

Before the discovery of Australia, every swan sighting ever made could confirm to Europeans that all swans were white – wrong! In 1697, the sighting of a black swan completely challenged this common preconception.

And the link with the data? In the same way that we tend to believe that a repeated observation is a general truth – wrongly so – we can be led to infer that what we see in the data we manipulate can be applied generally to the world around us and to any era. This is a fundamental error in the appreciation of data.

5. How to avoid epistemological error?

All it takes is a little mental gymnastics and a little curiosity:

  • Clearly understand how measurements are defined
  • Understand and represent the data collection process
  • Identify possible limitations and measurement errors in the data used
  • Identify changes in measurement methods and tools over time
  • Understand the motivations of data collectors

In the next article, we’ll explore the 2nd type of obstacle we may encounter when using data to illuminate the world around us: Technical Mistakes.

This article is heavily inspired by the book “Avoiding Data pitfalls – How to steer clear of common blunders when working with Data and presenting Analysis and visualization” written by Ben Jones, Founder and CEO of Data Litercy, WILEY edition. We recommend this excellent read!

You can find all the topics covered in this series here : https://www.businesslab.mu/blog/artificial-intelligence/data-7-pitfalls-to-avoid-the-introduction/

Business Intelligence, Company, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Data Regulations, Data Warehouse, Machine Learning, Self-service Analytics, Technology

Getting started with Business Intelligence: practical tips

« Wisdom is about extracting gold from raw data; with sharp Business Intelligence, every piece of information becomes a nugget. »

This adage perfectly sums up the potential of BI, provided you follow a few practical tips. Existing information goldmines allow companies to turn them into nuggets of gold shaped in their own image.

Definition

Business Intelligence (BI) is a set of processes, technologies and tools used to collect, analyse, interpret and present data in order to provide actionable information to an organisation’s decision-makers and stakeholders. The main objective of BI is to help companies make strategic decisions based on reliable and relevant data.

BI is widely used in many areas of business, such as financial management, human resources management, marketing, sales, logistics and supply chain, among others. In short, Business Intelligence aims to transform data into actionable knowledge to improve an organisation’s overall performance.

Before looking at the practical tips, let’s look at the elements that define BI. To put BI into practice within your business, there are 5 main steps you need to follow to achieve relevant and effective BI.

Data collection

Data is collected from a variety of sources inside and outside the company, such as transactional databases, business applications, social media, customer surveys, etc.

Data cleansing and transformation 

The data collected is cleaned, normalised and transformed into a format that is compatible for analysis. This often involves eliminating duplicates, correcting errors and standardising data formats.

Data analysis

Data is analysed using various techniques such as statistical analysis, data mining, predictive models and machine learning algorithms to identify trends, patterns and insights.

Data visualisation

The results of analysis are generally presented in the form of dashboards, reports, graphs and other interactive visualisations to facilitate understanding and decision-making.

Informations dissemination

The information obtained is shared with decision-makers and stakeholders throughout the organisation, enabling them to make informed decisions based on reliable data.

Practical tips

Now that we have a broad understanding of the definition of BI, it’s important to remember that getting started with Business Intelligence (BI) can be a challenge, but with a strategic approach and some practical advice, you can put in place an effective infrastructure for your business.
Here are some practical tips for getting started with relevant and effective Business Intelligence.

Clarify your objectives

Before you start implementing BI, clearly identify the business objectives you want to achieve. Whether you want to improve decision-making, optimise business processes or better understand your customers, clear objectives will help you focus your efforts.

Start with the basics

Don’t try to do everything at once. Start with pilot projects or specific initiatives to familiarise yourself with BI concepts and tools. This will also enable you to measure results quickly and adjust accordingly.

Identify your data sources

Identify your organisation’s internal and external data sources. This can include transactional databases, spreadsheets, CRM systems, online marketing tools, etc. Ensure that the data you collect is reliable, complete and relevant to your objectives.

Clean and prepare your data

Data quality is essential for effective BI. Put processes in place to clean, standardise and prepare your data before analysing it. This often involves eliminating duplicates, correcting errors and standardising data formats.

Choose the right tools

There are many BI solutions on the market, so look for those that best suit your needs. Considers factors such as ease of use, the ability to manage large sets of data, integration with your existing systems and cost.

Train your team

Make sure your team is formed to use BI tools and interpretation of data. BI is a powerful tool, but its effectiveness depends on the ability of your team to use it properly.

Communicate and collaborate

Involve stakeholders from the start of the BI implementation process. Their support and comments will be essential to ensure the long-term success of your initiative BI.

Start small and grow

Don’t try to implement all BI functionalities at once. Start with pilot projects or specific initiatives, and then gradually extend your use of BI according to the results obtained.

Involve stakeholders

Involve stakeholders right from the start of the BI implementation process. Their support and feedback will be essential in ensuring the long-term success of your BI initiative.

Measure and adjust

Track the performance of your BI and measure its impact on your business. Use this information to identify areas for improvement and make adjustments to your BI strategy over time.

By following these initial practical tips, you can get off to a good start with Business Intelligence and start leveraging your data to make informed decisions and drive business growth.

CONCLUSION

A Business Intelligence (BI) project is considered successful when it succeeds in adding value to the business by meeting its business objectives effectively and efficiently. Here are some key indicators that can define a successful BI project:

Alignment with business objectives: the BI project must be aligned with the company’s strategic objectives. It must contribute to improving decision-making, optimising business processes, increasing profitability or strengthening the company’s competitiveness.

Effective use of data: a successful BI project makes effective use of data to provide usable information. This means collecting, cleansing, analysing and presenting data in the right way to meet business needs.

User adoption: end-users must adopt BI tools and use them on a regular basis to make decisions. A successful BI project is one that meets users’ needs and is easy to use and understand.

Improved performance: a successful BI project translates into improved business performance. This can take the form of increased sales, reduced costs, improved productivity or any other performance measure relevant to the business.

Positive return on investment (ROI): a successful BI project generates a positive return on investment for the business. This means that the benefits gained from using BI outweigh the costs of implementing and maintaining the project.

Scalability and flexibility: a successful BI project is capable of adapting to the changing needs of the business and evolving with it. It must be flexible enough to support new needs, new types of data or new usage scenarios.

Management support and commitment: a successful BI project benefits from the support and commitment of the company’s management. Management must recognise the value of BI and provide the necessary resources to support the project throughout its lifecycle.

In summary, a successful BI project is one that contributes to achieving the company’s business objectives by effectively using data to make informed decisions. It is characterised by its alignment with business objectives, its adoption by users, its positive impact on business performance and its positive return on investment.

Did this article inspire you ?
Artificial Intelligence, Business Intelligence, Company, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Machine Learning, Self-service Analytics, Technology

Informed decision-making: fast and effective

« Promptness in decision-making is the pillar of success, but data insight is the foundation »

This adage perfectly sums up the subject of effective and rapid decision-making, which in the majority of businesses is based on data.

In today’s business world, data has become the fuel that drives strategic decision-making. From planning day-to-day operations to developing long-term strategies, businesses are now leveraging data to guide their choices and improve their overall effectiveness.

Here’s how data-driven decisions can radically transform your business. Whether you’re a leader in your sector or expanding into a new market, you’ll inevitably have to make strategic decisions that will affect your business.

Knowing that the wrong decision can have serious consequences for your project, and even for your company, it’s essential to have the right processes, decision-making tools and, above all, data.

Accuracy and relevance

Data-driven decisions are based on tangible, factual information, eliminating guesswork and hunches that are often prone to error. By using accurate, up-to-date data, businesses can make more informed and relevant decisions, reducing the risk of costly errors.

Identifying trends

By analysing large data sets, businesses can identify significant trends and recurring patterns. This enables them to anticipate market changes, identify new opportunities and stay ahead of the competition.

Personalising customer experiences

Customer behaviour data enables businesses to create personalised, tailored experiences. By understanding individual customer needs and preferences, businesses can offer better-tailored products and services, boosting customer loyalty and satisfaction.

Using technology to accelerate & optimise the process

Operational data enables companies to optimise their internal processes. By identifying inefficiencies and bottlenecks, companies can make precise adjustments to improve productivity, reduce costs and increase overall operational efficiency.

Data processing technologies such as artificial intelligence (AI), machine learning and predictive analytics can accelerate the decision-making process by automating repetitive tasks and providing actionable insights in real time. Advanced algorithms can detect subtle patterns in data, helping decision-makers to make better and faster decisions.

Data-driven decisions: the key to agility & agile decision-making

With real-time access to data, businesses can make decisions faster and more agilely. Using real-time dashboards and analysis, decision-makers have the information they need to react quickly to market changes and new opportunities.

Informed decision-making depends on access to accurate, up-to-date data. Companies that invest in data collection, analysis and visualisation systems are better equipped to make rapid, informed decisions. By exploiting available data, they can quickly assess market trends, understand customer needs and identify opportunities for growth.

Speed without compromising quality

While speed is essential in a competitive business environment, this does not mean sacrificing the quality of decisions. Data provides an objective framework on which to base choices, reducing the risk of costly errors associated with impulsive or ill-informed decision-making. By combining speed and accuracy, businesses can make effective decisions while maintaining a high level of quality and relevance.

The importance of a data culture

Beyond tools and technologies, informed decision-making depends on an organisational culture that values data and fosters collaboration. Companies that foster a data culture are better equipped to collect, analyse and effectively use information to make decisions. By encouraging transparency, communication and collaboration, these companies can fully exploit the potential of data to drive innovation and growth.

Conclusion

By adopting a data-driven approach, businesses can transform the way they make decisions, moving from an approach based on intuition to one based on tangible, verifiable data. As a result, they can improve operational efficiency, drive growth and maintain competitiveness in the ever-changing marketplace. Ultimately, businesses that fully embrace data-driven decision-making are better positioned to thrive in the modern economy.

Informed, data-driven decision-making offers an undeniable competitive advantage in the modern business environment. By combining speed and efficiency with the accuracy of data, businesses can adapt quickly to market changes, seize opportunities and maintain their position as leaders in their sector. By investing in advanced data processing technologies and fostering a data-driven culture within the organisation, businesses can successfully navigate an ever-changing world and thrive in the face of uncertainty.

Did this article inspire you ?
Business Intelligence, Company, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Data Regulations, Data Warehouse, Machine Learning, Technology

Basic SQL : what is it?

For a very long time, SQL was reserved for knowledgeable and technical people in the IT department, and not just any company entity or department could do it. It used to be the exclusive preserve of the company’s IT department. Now, with the spread of « IT », many departments are able to access their company’s data using SQL to query their databases, including marketing, accounting, management control, human resources and many others!

Are you a company specialising in e-commerce, healthcare, retail or simply an SME / SMI? Do you have a set of data stored in a database?

It’s essential to know the basics of structured query language (SQL) so that you can quickly get answers to your queries.

DEFINITION

SQL, or Structured Query Language, is a programming language specially designed for managing and manipulating relational databases.

It provides a standardised interface enabling users to communicate with databases and carry out operations such as inserting, updating, deleting and retrieving data efficiently.

THE BASICS OF SQL

Remember that SQL is nothing more than a way of reading the contents of a relational database to retrieve the information a user needs to meet a requirement.

DATA STRUCTURING

SQL is based on the relational model, which organises data in the form of tables. Each table is made up of columns (fields) representing specific attributes, and rows containing the records.

Table structure :

In the world of SQL, table structure is crucial. Each table is defined by columns, where each column represents a particular attribute of the data you are storing. For example, an « employees » table might have columns such as « surname« , « first name« , « age« , etc. These tables are linked by keys. These tables are linked by keys, which can be unique identifiers for each record, facilitating relationships between different tables.

The main operations (or commands / basic SQL queries)

SELECT : Used to extract data from one or more tables. The SELECT clause is used to specify the columns to be retrieved, the filter conditions and the sort order. This clause is one of the most fundamental in SQL. The WHERE clause, often used with SELECT, is used to filter the results according to specific conditions. For example, you might want to retrieve only those employees whose age is greater than 30, or as in the example below, only those employees in the sales department.

SELECT last name, first name FROM employees WHERE department = ‘Sales’;

INSERT: Used to add new rows to a table

INSERT INTO customers (last name, first name, email) VALUES (‘Doe’, ‘John’, ‘john.doe@email.com’);

UPDATE: Used to add new rows to a table

UPDATE products SET price = price * 1.1 WHERE category = ‘Electronics’;

DELETE: Used to delete rows from a table under certain conditions

DELETE FROM orders WHERE order_date < ‘2023-01-01‘;

Filtering and sorting

To filter the results, SQL uses the WHERE clause, which allows you to specify conditions for selecting the data. In addition, the ORDER BY clause is used to sort the results according to one or more columns.

Filtering and sorting are essential operations in the SQL language, making it possible to retrieve specific data and organise it in a meaningful way. Let’s explore these concepts with some practical examples

Filtering with the WHERE clause

The WHERE clause is used to filter the results of a query by specifying conditions. This allows you to select only the data that meets these criteria.

–Select employees with a salary greater than 50000

SELECT last name, first name, salary

FROM employees

WHERE salary > 50000;

In this example, only employees with a salary greater than 50000 will be included in the results.

Filtering with the ORDER BY clause

The ORDER BY clause is used to sort the results of a query according to one or more columns. You can specify the sort order (ascending or descending)

–Select customers and sort alphabetically by name

SELECT last name, first name, email

FROM customers

ORDER BY name ASC;

In this example, the results will be sorted in ascending alphabetical order by customer name.

Filtering and sorting can also be combined, i.e. combining the WHERE clause and the ORDER BY clause to filter the results at the same time

–Select products in the ‘Electronics’ category and sort by descending price

SELECT product_name, price

FROM products

WHERE category = ‘Electronics

ORDER BY price DESC;

There are other ways of filtering and sorting with operators, but this becomes SQL that is no longer basic, but for a more experienced audience.

By understanding these filtering and sorting concepts, you will be able to extract specific data from your SQL databases in a targeted and organised way.

Joins

Joins are essential for combining data from several tables.

Common types of joins include INNER JOIN, LEFT JOIN, RIGHT JOIN and FULL JOIN, each offering specific methods for associating rows between different tables.

Example of a simple join:

SELECT customer.name, orders.date

FROM customers

INNER JOIN orders ON customers.customer_id = orders.customer_id;

Types of joins :

INNER JOIN: Returns the rows when the join condition is true in both tables.

LEFT JOIN (or LEFT OUTER JOIN): Returns all the rows in the left-hand table and the corresponding rows in the right-hand table.

RIGHT JOIN (or RIGHT OUTER JOIN): The opposite of LEFT JOIN.

FULL JOIN (or FULL OUTER JOIN): Returns all rows when the join condition is true in one of the two tables.

Constraints for data integrity and Indexes to optimise performance

Constraints play a crucial role in guaranteeing data integrity. Primary keys ensure that each record in a table is unique, while foreign keys establish links between different tables. Uniqueness constraints ensure that no duplicate values are allowed in a specified column.

Indexes are data structures that improve query performance by speeding up data searches. Creating an index on a column makes searching easier, but it is essential to use them wisely, as they can also increase the size of the database.

Conclusion

SQL is a powerful and universal tool for working with relational databases. Understanding its fundamentals enables developers and data analysts to interact effectively with database management systems, making it easier to manipulate and retrieve crucial information. Whether for simple tasks or more complex operations, SQL remains an essential part of data management.

It offers a range of tools for interacting with relational databases in a powerful and flexible way. By understanding these basic concepts, you’ll be better equipped to effectively manipulate data, create custom reports and answer complex questions from large datasets. Whether you’re a developer, data analyst or database administrator, mastering SQL is an invaluable asset in the world of data management.

Did this article inspire you ?
Business Intelligence, Company, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Data Regulations, Data Warehouse, Machine Learning, Self-service Analytics, Technology

Data Warehouses vs Data Lakes: a comparative dive into the Tech World

In the ever-evolving world of technology, two terms have been making waves: Data Warehouses and Data Lakes. Both are powerful tools for data storage and analysis, but they serve different purposes and have unique strengths and weaknesses. Let’s dive into the world of data and explore these two tech giants.

Data Warehouses have been around for a while, providing a structured and organized way to store data. They are like a well-organized library, where each book (data) has its place. Recent advancements have made them even more efficient. The convergence of data lakes and data warehouses, for instance, has led to a more unified approach to data storage and analysis. This means less data movement and more efficiency – a win-win!

Moreover, the integration of machine learning models and AI capabilities has automated data analysis, providing more advanced insights. Imagine having a personal librarian who not only knows where every book is but can also predict what book you’ll need next!

However, every rose has its thorns. Data warehouses can be complex and costly to set up and maintain. They may also struggle with unstructured data or real-time data processing. But they shine when there is a need for structured, historical data for reporting and analysis, or when data from different sources needs to be integrated and consistent.

On the other hand, Data Lakes are like a vast ocean of raw, unstructured data. They are flexible and scalable, thanks to the development of the Data Mesh. This allows for a more distributed approach to data storage and analysis. Plus, the increasing use of machine learning and AI can automate data analysis, providing more advanced insights.

However, without proper management, data lakes can become « data swamps », with data becoming disorganized and difficult to find and use. Data ingestion and integration can also be time-consuming and complex. But they are the go-to choice when there is a need for storing large volumes of raw, unstructured data, or when real-time or near-real-time data processing is required.

In depth

DATA WAREHOUSES

Advancements

1. Convergence of data lakes and data warehouses: This allows for a more unified approach to data storage and analysis, reducing the need for data movement and increasing efficiency.

2. Easier streaming of real-time data: This allows for more timely insights and decision-making.

3. Integration of machine learning models and AI capabilities: This can automate data analysis and provide more advanced insights.

4. Faster identification and resolution of data issues: This improves data quality and reliability.

Setbacks

1. Data warehouses can be complex and costly to set up and maintain.

2. They may not be suitable for unstructured data or real-time data processing.

Best scenarios for implementation

1. When there is a need for structured, historical data for reporting and analysis.

2. When data from different sources needs to be integrated and consistent.

DATA LAKES

Advancements

1. Development of the Data Mesh: This allows for a more distributed approach to data storage and analysis, increasing scalability and flexibility.

2. Increasing use of machine learning and AI: This can automate data analysis and provide more advanced insights.

3. Tools promoting a structured dev-test-release approach to data engineering: This can improve data quality and reliability.

Setbacks

1. Data lakes can become « data swamps » if not properly managed, with data becoming disorganized and difficult to find and use.

2. Data ingestion and integration can be time-consuming and complex.

Best scenarios for implementation

1. When there is a need for storing large volumes of raw, unstructured data.

2. When real-time or near-real-time data processing is required.

In conclusion, both data warehouses and data lakes have their own advantages and setbacks. The choice between them depends on the specific needs and circumstances of the organization. It’s like choosing between a library and an ocean – both have their charm, but the choice depends on what you’re looking for. So, whether you’re a tech enthusiast or a business leader, understanding these two tools can help you make informed decisions in the tech world. After all, in the world of data, knowledge is power!

This article inspired you ?
Business Intelligence, Company, L'entreprise

Hello Mada…

DATANALYSIS/Business Lab Consulting Ltd. and S@phir Conseils sign a partnership to support Malagasy companies in the deployment of self-service data analysis platform through a complete range of services, consulting and solutions.

For the start of the 2021 school year, DATANALYSIS/Business Lab Consulting Ltd. is launching a new challenge! The company is already present on the beautiful islands of Reunion and Mauritius (under the brand Business Lab Consulting Ltd.), we wanted to expand our scope of activities and continue to explore the data across the Indian Ocean.

Why Madagascar?

The big island is booming and despite the instability it is known for, it is developing thanks to many high value-added industrial sectors such as agribusiness, textiles, new technologies, tourism and crafts.

Stéphane MASSON and his team never miss an opportunity to make their methodology and expertise known, allowing them to effectively help a new clientele.

And to be able to move forward in a well thought out and constructed way, nothing is better than having a local partner!

Represented by Mr. Jacques RAKOTOARIVELO, S@PHIR, an IT consulting company, has chosen to lead this adventure with us and we are grateful for this amazing new page !

With our best tools, we are ready to take up the challenge, to juggle with new data and above all: to help and accompany the Malagasy market to make the best decisions. #wearedatapeople